RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
怎么使用Lambda表达式编写递归

本篇内容主要讲解“怎么使用Lambda表达式编写递归”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么使用Lambda表达式编写递归”吧!

10多年的都兰网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。全网整合营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整都兰建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联从事“都兰网站设计”,“都兰网站推广”以来,每个客户项目都认真落实执行。

使用 Lambda 表达式构建递归函数

很多朋友认为这很容易,随手便可用 lambda 表达式写出一个阶乘递归:

Func fact = x => x <= 1 ? 1 : x * fact(x - 1);

不过,很抱歉,这行代码是无法通过编译的,VS 提示:使用了未赋值的变量 fact。

有种简单的解决办法,把上面这行代码拆成两行:

Func fact = null;  fact = x => x <= 1 ? 1 : x * fact(x - 1);

不过这种写法也有问题,老赵说得比较清楚,我就不在赘述了,请查看《使用Lambda表达式编写递归函数》一文中伪递归部分。

那么如何解决 lambda 表达式构建递归函数的问题呢?根据函数式编程理论,我们可以使用不定点组合子。

在学习不定点组合子之前,需要先了解更基础 λ 演算。

λ 演算

λ 演算的基础请大家参考维基百科:

http://zh.wikipedia.org/wiki/Lambda_演算

http://en.wikipedia.org/wiki/Lambda_calculus

非形式化的描述

请确保你已经理解了文中几个表达式的等价关系:

(λf. f 3)(λx. x + 2) == (λx. x + 2) 3 == 3 + 2   (λx. λy. x - y) 7 2 == (λy.7 - y) 2 == 7 - 2

还清楚知道函数应用(application)的概念及其左结合性:

f x y == (f x) y

还有它的各种等价变换

f x y == (f x) y = (f(x))y = (f(x))(y) = f(x)(y)

归约

并会运用三个常用的规约(Reduction)

1.α-变换(α-conversion)

2.β-归约(β-reduction)

3.η-变换(η-conversion)

不动点组合子

请参考:

http://zh.wikipedia.org/wiki/不动点组合子

http://en.wikipedia.org/wiki/Fixed-point_combinator

定义

不动点组合子(Fixed-point combinator,或不动点算子,使用 FIX 表示)是计算其他函数的一个不动点的高阶函数。

不动点算子具有以下特性,对于任何函数 f 都有:

FIX ff = f (FIX f)

定义匿名的递归函数

不动点组合子允许定义匿名的递归函数,具体来说是将一个非递归的单步函数(只执行递归中的一步,a single step of this recursion,使用 g 表示)转换为递归函数。

如下是阶乘的单步函数定义:

g = λf. λn. (ISZERO n) 1 (MULT n (f (PRED n)))

FIX g 可获取到匿名的递归函数:

FIX g = λn. (ISZERO n) 1 (MULT n ((FIX g) (PRED n)))

向 FIX g 的参数 n 传入值 5,可最终得出:

FIX g 55 = 5 * (4 * (3 * (2 * (1 * 1)))) = 120

常用的不定点组合子

不动点组合子中最有名的(也可能是最简单的)是 Y 组合子:

Y = λf. (λx. f (x x)) (λx. f (x x))

另一个常见不动点组合子是图灵不动点组合子(阿兰·图灵发现的):

Θ = (λx. λy. (y (x x y))) (λx.λy.(y (x x y)))

传值调用(call-by-value)

在 λ 演算中,每个表达式(lambda term)都代表一个只有单独参数的函数,这个函数的参数本身也是一个只有单一参数的函数,同时,函数的值是又一个只有单一参数的函数。

根据此描述,可知 λ 演算中函数只有一个参数,这个参数是一个函数,而不是一个值。而对于我们常见的递归(阶乘、斐波那契数列求值),参数都是值(自然数)。两者是不匹配的。

为了适当传值调用,需要将不动点组合子 η-展开:

简单而言 η-变换 是说 λx. f x 和 f 可以互相转换。从 f 这种简单形式 η-变换 为 λx. f x 复杂形式,称为 η-展开

对于 Y 组合子,通常是将其中的 (x x) η-展开为  λy. x x y,由此得出传值调用版本的 Y组合子(也称为 Z 组合子):

Y = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

如果不展开呢?会怎样?

如果使用不展开的不动点算子,也能写出可编译通过的代码,但最终执行会陷入死循环,直至堆栈溢出。

小结

后续章节将使用以下符号和名称,不再另行说明:

1.FIX:不动点组合子

2.g:单步函数

3.n:表示递归函数的参数(在阶乘、斐波那契数列求值中是一个自然数)

对于 FIX、g、n:

1.FIX g: 将会生成对应的递归函数

2.FIX g n: 将进行递归运算

λ 演算表达式与 c# lambda 表达式的对应关系

λx. x + 2

λx. x + 2 在 c#中的 lambda 表达式可表式为:x => x+ 2;

假定 x 的 int 类型,可写作:

Func f = x => x + 2;

相应 (λx. x + 2) 1 可写为:

var result = f(1);    // 结果为 3

λx. λy. x + y

复杂点,λx. λy. x + y 用 c# 的 lambda 表达式表示为:x => y => x + y;

x, y 类型为均整数时,可写作:

Func> f = x => y => x + y;

相应 (λx. λy. x + y) 1 2 便是:

var result = f(1)(2);     // 结果为 3

λx. λy. λz. x + y + z

再复杂些,λx. λy. λz. x + y + z 表示为:x => y=> z => x + y + z,三个参数都为 int 时 c# 代码:

Func>> f = x => y => z => x + y + z;

可如下调用:

// (λx. λy. λz. x + y + z) 1 2 3  var result1 = f(1)(2)(3);    //结果为 6   // (λx. λy. λz. x + y + z) 1  →  λy. λz. 1 + y + z   Func> g = f(1);   // (λy. λz. 1 + y + z) 2  →  λz. 1 + 2 + z  →  λz. 3 + z  Func h = g(2);  // (λz. 3 + z) 3  →  3 + 3  →  6  var result2 = h(3);        // 结果为 6

每 5 行,向 f 传入一个常量 1,返回一个新的方法 g;再经过第 7 行,向 g 传入常量 2,再次返回一个新方法 h。

方法 h 只能接受一个参数,***得出 h(3) = 6。

为什么不是  (x, y, z) => x + y + z?

也许你会有疑问,不就是 x、y、z 三个整数加起来嘛,为什么搞这么复杂,像下面这样不是更简单吗?

Func f = (x, y, z) => x + y + z;  var result = f(1, 2, 3);

确实简单,不过:

在 λ 演算中,每个表达式(lambda term)都代表一个只有单独参数的函数,这个函数的参数本身也是一个只有单一参数的函数,同时,函数的值是又一个只有单一参数的函数。

注意都是只有一个参数,对应到 c# 的 lambda 表达式,也应是一个参数,所以是:x => y=> z => x + y + z。

总结

λ 演算表达式c# lambda 表达式
λx. x + 2x => x+ 2
λx. λy. x + yx => y => x + y
λx. λy. λz. x + y + zx => y=> z => x + y + z

好像有些规律:对于一个 Lambda terms,去掉“λ”并把“.”替换为”=>”便可变成对应 lambda 表达式。(注意,这个规律不严谨!)

练习一下,看看下面这个如何转为 lambda 表达式:

λx. λn. (g (x x) n)

先对它进行一步演算得出:

λx. λn. (g (x(x)) (n))

运用上的的规律,可以写出 lambda 表达式:x => n => g((x(x))(n)

对于复杂点的如:λx. f ( λv. (x x) v),这条规律就不适用了。文后续部分会通过演算绕开这种复杂的转换,不对此进行讨论。

理解本文中的泛型和 lambda 表达式

对于上一部分使用的泛型和 lambda 表达式,尤其是下面这行代码,你需要花点时间去理理思路(因为后续章节中泛型要远比此复杂):

Func>> f = x => y => z => x + y + z;

如果对你对泛型和 lambda 认识不是非常深刻的话,难度有点大,不妨先从下面这个简单点的开始:

Func> f = x => y => x + y;

换种写法,或许有助于理解:

Func>  f = x => {                    Func g =  y => { return x + y ;};      return g;  };

本文简单阐述了 lambda 构建递归函数的问题,粗略提及 λ 演算及不动点组合子的知识,并总结了下 λ 演算表达式与 c# lambda 表达式的对应关系。

到此,相信大家对“怎么使用Lambda表达式编写递归”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!


当前文章:怎么使用Lambda表达式编写递归
转载来于:http://scyingshan.cn/article/ihesoj.html