pandas对齐运算-创新互联
Pandas的对齐运算
是数据清洗的重要过程,可以按索引对齐进行运算,如果没对齐的位置则补NaN,最后也可以填充NaN
创新互联公司成立十多年来,这条路我们正越走越好,积累了技术与客户资源,形成了良好的口碑。为客户提供成都网站设计、网站建设、网站策划、网页设计、域名申请、网络营销、VI设计、网站改版、漏洞修补等服务。网站是否美观、功能强大、用户体验好、性价比高、打开快等等,这些对于网站建设都非常重要,创新互联公司通过对建站技术性的掌握、对创意设计的研究为客户提供一站式互联网解决方案,携手广大客户,共同发展进步。Series的对齐运算
1. Series按行、索引对齐
示例代码:
s1 = pd.Series(range(10, 20), index = range(10))
s2 = pd.Series(range(20, 25), index = range(5))
print('s1: ')
print(s1)
运行结果:
s1:
0 10
1 11
2 12
3 13
4 14
5 15
6 16
7 17
8 18
9 19
dtype: int64
s2:
0 20
1 21
2 22
3 23
4 24
dtype: int64
2. Series的对齐运算
示例代码:
s1 + s2
运行结果:
0 30.0
1 32.0
2 34.0
3 36.0
4 38.0
5 NaN
6 NaN
7 NaN
8 NaN
9 NaN
dtype: float64
DataFrame的对齐运算
1. DataFrame按行、列索引对齐
示例代码:
df1 = pd.DataFrame(np.ones((2,2)), columns = ['a', 'b'])
df2 = pd.DataFrame(np.ones((3,3)), columns = ['a', 'b', 'c'])
print('df1: ')
print(df1)
print('')
print('df2: ')
print(df2)
运行结果:
df1:
a b
0 1.0 1.0
1 1.0 1.0
df2:
a b c
0 1.0 1.0 1.0
1 1.0 1.0 1.0
2 1.0 1.0 1.0
2. DataFrame的对齐运算
示例代码:
df1 + df2
运行结果:
a b c
0 2.0 2.0 NaN
1 2.0 2.0 NaN
2 NaN NaN NaN
填充未对齐的数据进行运算
- fill_value
使用 add, sub, div, mul 的同时,
通过 fill_value指定填充值,未对齐的数据将和填充值做运算
示例代码:
print(s1)
print(s2)
s1.add(s2, fill_value = -1)
print(df1)
print(df2)
df1.sub(df2, fill_value = 2.)
运行结果:
print(s1)
print(s2)
s1.add(s2, fill_value = -1)
print(df1)
print(df2)
df1.sub(df2, fill_value = 2.)
运行结果:
# print(s1)
0 10
1 11
2 12
3 13
4 14
5 15
6 16
7 17
8 18
9 19
dtype: int64
# print(s2)
0 20
1 21
2 22
3 23
4 24
dtype: int64
# s1.add(s2, fill_value = -1)
0 30.0
1 32.0
2 34.0
3 36.0
4 38.0
5 14.0
6 15.0
7 16.0
8 17.0
9 18.0
dtype: float64
# print(df1)
a b
0 1.0 1.0
1 1.0 1.0
# print(df2)
a b c
0 1.0 1.0 1.0
1 1.0 1.0 1.0
2 1.0 1.0 1.0
# df1.sub(df2, fill_value = 2.)
a b c
0 0.0 0.0 1.0
1 0.0 0.0 1.0
2 1.0 1.0 1.0
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
本文标题:pandas对齐运算-创新互联
文章起源:http://scyingshan.cn/article/dpdhsp.html